On the semiconvergence of additive and multiplicative splitting iterations for singular linear systems
نویسندگان
چکیده
Keywords: Additive/multiplicative splitting iteration method Singular linear systems Hermitian matrix Semiconvergence a b s t r a c t In this paper, we investigate the additive, multiplicative and general splitting iteration methods for solving singular linear systems. When the coefficient matrix is Hermitian, the semiconvergence conditions are proposed, which generalize some results of Bai [Z.-Z. Bai, On the convergence of additive and multiplicative splitting iterations for systems of linear equations, J. Comput. Appl. Math. 154 (2003) 195–214] for the nonsingular linear systems to the singular systems.
منابع مشابه
Semiconvergence of extrapolated iterative method for singular linear systems
In this paper, we discuss convergence of the extrapolated iterative methods for solving singular linear systems. A general principle of extrapolation is presented. The semiconvergence of an extrapolated method induced by a regular splitting and a nonnegative splitting is proved whenever the coe cient matrix A is a singular M -matrix with ‘property c’ and an irreducible singular M -matrix, respe...
متن کاملAdditive Schwarz Iterations for Markov Chains
A convergence analysis is presented for additive Schwarz iterations when applied to consistent singular systems of equations of the form Ax = b. The theory applies to singular M -matrices with one-dimensional null space and is applicable in particular to systems representing ergodic Markov chains, and to certain discretizations of partial differential equations. Additive Schwarz can be seen as ...
متن کاملSemiconvergence of Alternating Iterative Methods for Singular Linear Systems
In this paper, we discuss semiconvergence of the alternating iterative methods for solving singular systems. The semiconvergence theories for the alternating methods are established when the coefficient matrix is a singular matrix. Furthermore, the corresponding comparison theorems are obtained. Keywords—Alternating iterative method; Semiconvergence; Singular matrix.
متن کاملAlgebraic Schwarz Methods for the Numerical Solution of Markov Chains
The convergence of additive and multiplicative Schwarz methods for computing certain characteristics of Markov chains such as stationary probability vectors and mean first passage matrices is studied. Our main result is a convergence theorem for multiplicative Schwarz iterations when applied to singular systems. As a by-product we also obtain a convergence result for alternating iterations. It ...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 204 شماره
صفحات -
تاریخ انتشار 2008